

2. And now Bill Nye: Atoms

Dmitri Mendeleev (1834-1907)

- A Russian chemist attempted to organize the elements based on information such as density, appearance, atomic mass, and melting point.
- After much work he determined that there was a <u>repeating pattern</u> to the properties when the elements were arranged in order of increasing atomic mass.

- In this order, certain chemical properties of the elements were "periodic" meaning that they had a regular repeated pattern.
- There were still some missing elements, but he predicted that those were elements yet to be discovered.

• In 1914 Henry Moseley determined that the elements should be arranged by the number of protons - the atomic number - and the periodic table was rearranged using this method, which greatly improved the arrangement of elements.

- Labeling the groups can be confusing because the rules change with the middle transition elements.
- The transition elements get grouped together as the "B" elements, or groups #1B - 8B.
- All of the other elements are "A" elements, with groups #1A - 8A.
- Using this labeling system will tell you exactly how many valence electrons are in the atoms.
- However, sometimes the groups are just labeled #1-18.

- Hydrogen (H) and helium (He) are special elements.
- Hydrogen can have the talents and electrons of two groups, one and seven.
- Sometimes it is missing an electron, and sometimes it has an extra.
- · Helium is different from all of the other elements.
- · It can only have two valence electrons
- Even though it only has two, it is still grouped with elements that have eight.

Hydrogen: stands alone

- reactive,
- · 1 electron in outer level.
- · Hydrogen does not match properties of any single group so it is placed above Group 1.
- · It can give it's electron away with ionic bonding, or share it's electron in covalent bonding

4. Hydrogen Reaction

Hydrogen Balloon Explosion

REACTION ONLY

THE PERIODIC TABLE OF VIDEOS To Nottingham

Periodic Table of Videos: http://www.periodicvideos.com/

Metals, Metalloids, & Nonmetals

- Another pattern we find on the periodic table is that all of the metals are grouped together on the left & the nonmetals are on the right.
- The metalloids fall in between, near the zigzag line.
- This trend isn't a coincidence.
- The number of <u>valence electrons</u>, or electrons in the outer shell, determines how an element acts.

Metals, Metalloids, & Nonmetals

- For example, all of the metals have <u>few</u> valence electrons.
- This causes them to possess metallic properties such as, conductivity & reactivity.
- Conversely, the nonmetals on the right of the periodic table have <u>almost</u> complete sets of electrons in their outer level.
- Therefore, they possess nonmetallic traits such as dullness, poor conductivity, and brittleness.

Metals, Metalloids, & Nonmetals

- We can summarize all of this just by saying:
- Elements get <u>less</u> metallic as you move from left to right.

Families Stick Together

- Scientists group families of elements by their <u>chemical</u> <u>properties</u>.
- · Each family reacts a different way with the outside world.
- BUT, elements within a family are similar to one another.
- Metals behave differently than gases and there are even different types of metals.
- Some don't react, others are very reactive, and some are metallic.
- · Let's go over the periodic table families...

Family #1 or 1A: Alkali Metals

- · Li, Na, K, Rb, Cs, Fr
- Very Reactive
- 1 valence electron

- All have ONE outer electron to lose.
- Sodium is used in street lights, and different compounds are used in detergent, paper, glass & soap.
- This makes them highly reactive, since they are looking to combine with another element to become stable and have that outer level filled and complete (or happyl).
- They are the most reactive of all metals
- These are also soft and can be cut with a knife.

Family #2 or 2A: Alkaline Earth Metals

- Be, Mg, Ca, Sr, Ba, Ra
- very reactive, but less than alkali metals
- 2 valence electrons

- Not as reactive because it is harder to give two electrons away than just one.
- Potassium is used in fertilizer and with chloride.
- These elements are typically what are lost in perspiration which is why people buy special sport drinks that contain these elements!
- Calcium is in milk
- Magnesium is in Fireworks.

Family #3-12 (1B-8B): **Transition** Metals

- 1-2 valence electrons
- Less reactive than alkaline earth metals because they don't give away their electrons as easily

- In these "short families" the properties are very much alike.
- Most have high melting points and are hard.
- Have 1 or 2 properties like the alkali or alkaline earth families.
- Group 11 = The <u>Copper</u> Family: are the coinage metals (Cu, Ag, Au) used to make currency

Family #3-12 (1B-8B): Transition Metals

- Lanthanide Series:
 - 15 elements that start with lanthanum (La) at atomic number 57 and finishing up with lutetium (Lu) at number 71
 - shiny reactive metals
 - Most found in nature
 - Actinides Series:

 15 elements that start with actinium (Ac) at atomic number 89 and finishing up with lawrencium (Lr) at number 103.
 - radioactive and unstable
 - Most are man-made & not stable in nature

Group 13: The Boron Group

- One metalloid and 4 metals
- B, Al, Ga, In, Tl
- <u>3</u> electrons in the outer energy level
- Reactive
- Solid at room temperature
- Most common element in this group is <u>aluminum</u>

- Boron is most commonly found as borax and boric acid, which are used in cleaning compounds.
- Aluminum is the third most common element in the earth's crust. It is used as a
 coating agent, to prevent oxidation. It is an excellent conductor of electricity
 and heat and can be found in many cooking utensils.

#14 or 4A: Carbon Family

- · C, Si, Ge, Sn, Pb
- 1 metal, 1 metalloid, and 2 nonmetals.
- 4 valence electrons
- · No other group has a greater range of properties.
- They have the unique ability to form chainlike compounds.
- This family is incredibly important in the field of **technology**.

#15 or 5A: Nitrogen Family

- N, P, As, Sb, Bi
- 2 nonmetals, 2 metalloids, 1 metal
- 5 valence electrons
- · Reactivity varies

#16 or 6A: Oxygen Family

- O, S, Se, Te, Po
- 3 nonmetals, 1 metalloid, 1 metal
- 6 valence electrons
- reactive
- · Most members form covalent compounds
- Must share 2 electrons with other elements to form compounds.
- Oxygen is one of the most reactive nonmetallic elements.

Family #17 or 7A: Halogens

- F, Cl, Br, I, At
- very reactive
- nonmetals
- 7_valence electrons

THE HALOGEN GROUP

- They are very reactive because have 7 valence electrons, this means they are ALMOST full and can combine with many elements.
- Halogen elements combine with metals to form compounds called salts.
- Halogen means "salt-producer".
- The combine with a metal by ionic_bonding.
- They are the most reactive of the nonmetals families.
- As you move down the column, the elements get less reactive
- A halide is when a halogen combines with another element (NaCl)

Family #18 or 8A: **Noble Gases**

- He, Ne, Ar, Kr, Xe
- Nonmetals
- gases
- NO bonding with other elements
- 8 valence electrons (except
- With the exception of He, these elements have 8 electrons in their outer energy level.
- Very stable
- NON REACTIVE
 They are <u>inert</u>, meaning they don't react with anything.
 - Why? Because they're happy!
 - All of these elements have full outer shells
 - Colorless, odorless gases at room temperature Often used in neon products/neon lights
 - He which only has All are found in Earth's atmosphere
 - Only in laboratories can scientists force these to bond with other elements.

5. Chemical Music Video

Music & Lyrics © 2005, Mark Rosengarten

